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The paper gives a numerical solution of the steady convective heat transfer from circular ellipsoid 
shaped particles in a confined laminar region. The effect of eccentricity, the Peclet ~tilllber 
and the restriction of the space domain on the magnitude of the Nusselt number is shown on nu
merical results. The paper examines also the effect of variation of parameters on distribution 
of intensity of heat transfer in the vicinity of the particle and on the thickness of the boundary 
layer. A comparison of theoretical results with experimental ones published to date shows a good 
agreement. 

The problem of convective heat transfer from particles is often encountered in chemical engineer
ing practice. The research effort in this field has been directed predominantly to experimental 
investigation of the effect of conditions on intensity of heat transfer. The hyd;;;dynamit' and 
thermal conditions at convective heat transfer in a bed of particles are too complex to be treated 
mathematically. Accordingly, the theoretical papers concentrate on solution of a substantially 
simplified problem. The most often investigated situation is that of convective heat transfer from 
a spherical particle to an infinite laminar medium1

. Both the experimental and the theoretical 
studies show that the disturbances in the thermal and flow fields induced by the presence of the 
particle diminish with the distance from the particle. 

Lamb2 solved the Navier-Stokes equation for low values of the Reynolds number and as
sumed a constant velocity on the spherical sUlface characterizing the restriction of the space 
domain avialable for one particle . Thus he approximated simultaneous motion of several parti
cles without mutual contact by a set of individually moving particles each in its own delimited 
region. Similar approach was us'ed by Pffefer and Happel3 to solve the intensity of heat transfer 
from a spherical particle to a laminar medium. In the Fourier equation, characterizing the :Con
vective transfer, they used Lamb's solution for the flow field. In addition, they assumed a, con
stant temperature on the surface delimiting the space available for the particle. Their numerical 
results are comparable with experimental ones for Pe < 1, Another paper4 gives a solution of the 
same problem also for Pe ~ 100. Theoretical solution of convective transfer from the surface 
of non-spherical particles in an infinite laminar region is provided by Brenners. Solution of the 
Navief-Stokes equation for the laminar flow past the circular ellipsoid shaped particles in an in
finite fluid is given by Happel and Brenner6. 
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In the present paper we shall make use of some results of Happel and Brenner6 and 
derive the flow field in the neighbourhood of circular ellipsoidal particles, assuming 
a constant velocity on the surface of a circular ellipsoid of the same eccentricity with 
collinear axes. If moreover the temperature on tills surface is assumed constant, 
we can also calculate intensity of heat transfer in the confined laminar region. 

EQUATION OF CONVECTIVE HEAT TRANSFER FROM CIRCULAR ELLIPSOID 

IN A RESTRICTED LAMINAR REGION 

Mathematical model of the process of convective heat transfer is basically an ex
pression of the Fourier law 

(1) 

The dimensionless temperature T = 1 at the surface of the particle and V2 T = 0 
on the boundary of the restricted region. 

Oblate Ellipsoids 

Since our particle is a circular ellipsoid it is convenient to transform Eq. (1) into elliptic 
coordinates. Elliptic coordinates, however, are different for oblate and prolate 
ellipsoids. Accordingly, the transformation of Eq. (1) will be derived separately 
for both types of coordinates . 

A detailed description of these coordinates, including instructive figures and an outline of the 
transformation, is given by Happel and Brenner6. Introducing U = sinh ,;, x = cos 17 we may 
write6 for the stream function 'I' 

where Cl' C2, C3 are integration constants. Equation of an ellipsoid in these coordinates takes 
the form U = Uo = const. Consider the equation of an envelope of the restricted region U = U t . 
For Uo and u l we then have relation Uo = du l , where d is a quantity characterizing the restric
tion (d < 1). If d decreases, the envelope of the restricted region departs from the surface of the 
particle. For d = 0, the space becomes unrestricted. Happel and Brenner6 determine the integra
tion constants for this case only. They do not introduce the envelope of restriction . 

The integration constants c l , c2, c3 are determined from the boundary conditions: 

'I' = 0 and Ol/l /ou = 0 for Il = Uo 

'I' = tUc 2 (u 2 + J) (1 - x 2
) for u = III 

On substituting into Eq. (2) we get: 

-tuocl + t [uo - (u6 + J) arccotg Ilol c2 + (u6 + J) c3 = 0 , 

- -}Cl + (1 - Uo arccotg Uo) C2 + 2uoc 3 = 0 , 

-tulc1 + t [Ul - (ui + 1) arccotg ud c2 + (IIi + J) c3 = -t Uc
2(ui + J) . 
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For the eccentricity we have that c = (a 2 - b2 )1 / 2. If the eccentricity of the ellipse (a cut 
through a given particle) is known and if the magnitude of the major axis is assumed to be ao 
we may write Uo = (a~ - c2)1/Z. For a given restriction d we then may write ul = lIo/d. Thus 
if the eccentricity of a given ellipsoidal particle, the magnitude of its major axis ao, and the 
restriction d are known, the coefficients cl, cz, c3 of the system (3) are known too . System (3) 
is then a set of three linear equations in three variables. Since the right hand sides of the system (3) 
are directly proportional to the product Vc 2

, the roots will be scaled by this product too. Substi
tuting unity for this product at solution, we obtain roots Cl" C2, C3 and for C1' C2' c3 we have 
c1 =, c2 VCl, . .. etc. For the ellipsoid forming the boundary follows , on condition that the eccen
tricity is the same and ul = lIo/d, that 

From the relations given by Happel and Brenner6 in the already cited paper we determine the 
ellipsoidal components of velocity 

VcZ(l - xZ) (- cl,/2 + (;2 [1 - u arccotg u) + 2C3U) 
v - -----.---- ---- -.. . --

q - c2 [(u Z + xZ) (1 _ x 2»)l/2 

Vcz 2x [-(cl,/2) II + (c'z/2) [u - . (liZ + 1) arccotg II) + C3(U 2 + 1») 
v~ = ----- --- --·-~2[(;;'2+ x2)(1=. xZ»)l/Z- ----- - .. · 

After transformation , substitution for v
11 

and v~ and some arrangements, Eq. (1) 
takes the form 

Pe c' {2X {-(c~/2) u + (c;/2) [ti - (tl2 + 1) arccotg uJ + c;(u 2 + I)} aT + 
2 (1 + U)l/Z ae 

+ (1 - XZ) [ -(c~/2) + (c;/2) (1 - u arccotg u) + 2c;uJ aT} = 
(1 - XZ)1 / 2 a'1 - -

1 ~ [(1 + UZ)1/2 aT] + 1 a (1 _ X2)1 / 2 aT, (4) 
(1 + UZ)l/Z ae ae (1 - X2)1 / 2 a'1 a'1 

where c', the dimensionless eccentricity, equals cia . 

The domains of variables are ° ;;:; '1 ;;:; 7t, arsinh Uo ;;:; ~ ;;:; arcsinh u l' The bound
ary conditions are T( Uo), = 0, T(u 1) = 1. It is convenient to rearrange Eq. (4) 
by substituting x = cos '1 and consistently in derivatives too: 

(5) 

Now w~ shall transform the coordinate ~. For the application of the finite difference 
method of solution it is convenient to implement the inverse transformation y = 

= Ql/U + Q2 so as to get u = Uo at y = ° and Ul = uo/d at y = 1. By these substitu
tions the domain of the solution transforms into a rectangle 

-1 ;;:; x ;;:; 1; 0;;:; Y ;;:; 1. (6) 
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Besides, inverse transformation in y direction provides that major portion of the 
interval (0 - 1> for y is crowded near the surface of the particle where major chan
ges in temperature occur. The pertinent relations for y have the following form: 

y 
__ ~ _ _ d 

(1 - d) II - d 
It = sinh l; , 

a/al; = Uo (1 + 1/ 2)1 / 2 a/ay . 
(1 - d) u2 

(7) 

Performing the transformation of the derivatives and after some arrangement we get: 

c' Pe/2 [2X{ -c;u /2 + (c; /2) [u - (u 2 + 1) arccotg uJ + 

+ c;(u 2 + I)} Uo aT + (I + x2)[c~/2 + c;(1 - uarccotgu) + 2c;u] aT] + 
(l - d) u2 ay ox 

u a2T 2 aT 2 a2T aT + _ _ 0 - (1 + 1/ 2 ) _ + - + (\ - x )-- - 2x - = O. 
(\ - dy u4 c3y2 (1 - d) 1/3 oy ax 2 ax 

(8) 

Thus we arrive at partial differential equation of the second order and elliptic within 
the domain of interest. The coefficients of the derivatives are functions of x , y. The 
domain of solution is given as -1 ~ x ~ 1, ± 0 ~ y ~ 1. The boundary conditions arc 
given as T(y = 0) = O. T(y = 1) = 1. For x = ± 1 we request that aT/ax = O. 

Prolate Ellipsoids 

Introducing 

x = cos 11, v = cosh'; , 

the stream function I/f may be written as: 

Ct, c2, c3 are integration constants to be determined from the boundary conditions. Equation 
of an ellipsoid in these coordinates takes the form v = Vo = const. The equation of the envelope 
of the restricted region is taken as v = VI' Between Vo and VI we have that Vo = dVI' where d 
is a quantity characterizing restriction (d < 1). The lateral axis of a longitudinal axial cut is 
designated again as ao. This time, however, ao is the minor axis. The eccentricity is c = (bij -
- aij)1/2. Following quantities are given as parameters of the solution; the eccentricity c, the 
length of axis ao and the restriction d. The value of Vo is obtained as a ratio Vo = bo/c = 
= (e2 + aij)1/2/e. The values of Ct, c2, c3 are determined from the boundary conditions: 
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IjF = 0 for v = Vo ' 

OIjF!ov = 0 for v = Vo ' 

'I' = -tUC2(V 2 - 1) (1 - x 2) for v = vI . 

On substitution into Eq. (9) we get : 

- ~ Vo + ~ [vo -- (vil- I) arccotgh vol + c3(1 -- vil) = O. 
2 2 

(10) 

For given vo, vI the solution is again scaled by expression c2 U. Thus we substitute unity for c2 U. 
determine cl. C2. c] and write cl = c2 Uci. c2 = c2 Ucz. c3 = c2 Uc; . The shape of the restricting 
surface may be obtained from conditions of equal eccentricity and vI = vo Id. The first condi
tion leads to bl = bold; the second leads then to 

( 

2 ( 1 )2)1 /2 
al = ;~ + c 2 d2 - 1 

The components of velocity can be determined similarly as in the case of oblate ellipsoids: 

Uc2 2x { - .1. + ..:i [v - (v2 - 1) arccotg vl + c3(1 - V2)} 
2 2 '. 

v - - ------- - -._- ----------~-.-.~\---~--.--.- - ----- ... 
~ - c2 [(x 2 _ v2 ) (v2 _ 1)11 !2 

(11) 

Uc2(1 - x2) [ - ~ + cz(l - arccotgh V)] - 2cJv 

11 = ---------~---.--\----------.--

~ c2 [(x2 _ v2) (I _ x2)]1 /Z 

After transformation and subst itution for v~ and vll , Eg. (1) takes the fo rm 

- c -+ p~ '{ 2x - (c~/2) + (c~J2) [v - (v 2 
- 1) arccotgh v] + c;(1 - v2

) aT 
2 (v 2 - 1)1 / 2 a~ 

+ (1 - x2
) [ -(c~/2) + c~(1 - v arccotgh v) - 2c;v] aT} = (12) 

(1 - X 2)! ! 2 a~ 
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Peis again the Peelet number Pe = (2Uao)la,v, c' is the dimensionless eccentricity 
defined as c' = cIao. The domains of individual variables are: 

o ~ '1 ~ 1t; arccosh Vo ~ ~ ~ arccosh VI 

and the boundary conditions : 

Similar transformation as in Eq. (6) is performed with Eq. (12): 

. : 
x = cos '1 , ~ = -(1 - X 2)1/2 ~ 

0'1 ' ax' 
I: 

y = qllv + q2, 

where ql> q2 are such so as y(v)t = 1 and y(vo) = O. These conditions lead to the 
following substitution 

1 d 
y = (1 - d) v - 1 - d ; 

v = cosh ~ ; 

Having substituted for the derivatives in Eq. (12) and after some arrangement we ob

tain relation: 

C' p,e, ,[_ ~ x {~ v + (~) [v - (v2 - 1 arccotgh v] + c;(l _ V2)} aT + 
2 ' ' (1 - d)2 2 2 oy 

+ (1 - x2
) [ - ~ + c'(l-arccotgh v) - 2C;V] ~:] + (13) 

+ vi(v 2 
- 1) 02T _ _ ~ aT + (1 _ X2)~ _ 2x aT = 0 

(1 - d)2 v4 oy2 (1 - d) v3 oy ox2 ax 

-1 ~ x ~ 1; 0 ~ .II ~ 1 ; T(O) = 0; T(1) = 1, aT = 0 for x = ± 1. 
ax 

c', d and Pe in this equation are given parameters. c~, c; , c; are numerical values 

of the roots of the set oflinear equations (10) V = vo/(Y(l - d) + d). 
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Eq. (13) is thus also a partial differential equation of the second order of the elliptic 
type. The domain of the solution and the boundary conditions remain the same as 
for Eq. (8) pertaining to oblate ellipsoids. 

Eqs (8) and (13) are formally of the same type. Both are solved by the finite difference 
method using a program presented in the preceding paper7 • The finite difference 
method enables the temperature in preset grid points to be determined. Numerical 
derivation, integration and interpolation permit then to find a series of additional 
properties of the problem for selected parameters Pe, d and bla. Several computation
al runs for different values of parameters and evaluation of the results enables 
us to examine the dependence of evaluated quantities on varying parameters. 

Numerical interpolation gives the pattern of isotherms in the neighborhood of the 
particle. If the local thickness of the boundary layer is defined as the distance of the 
T = 0'()1 isotherm, then the former may also be determined by numerical interpola
tion. By numerical derivation we determine temperature gradients in the neighbor
bood of the particle. The value of the Nusselt number is determined from the rela
tion Nu = -lIS f dS grad Tby numerical integration. 

RESULTS 

Individual calculated quantItIes were changing with variation of parameters . The 
course of the dependence of Nu on Pe at different restrictions and the ratio of the 
axes b/a = 0·8 is shown in Fig. 1. The figure also shows that in an infinite region 
the value of the Nusselt number for oblate ellipsoids and low values of the Peclet 
number is smaller than 2. The value of Nu increases in all cases with increasing Pe. 
The increase is slower for smaller values, faster for higher ones. With -gradually 
increasing restriction d the "Value of the Nusselt num ber increases, and, simultaneously, 
the steeper part of the Nu = f(Pe) curve moves toward higher values of Pe. Fig. 2 
shows the dependence of the Nusselt number on Pe for ellipsoidal particles of dif
ferent eccentricity at zero restriction. Curves 1 through 4 give the dependence .of Nu 
on Pe for oblate ellipsoids and the ratio of axes 0'99, 0,8, 0·4 and 0·1. Curves 5 
and 6 correspond to the dependences for prolate ellipsoids. Curve ,5 corresponds 
to ellipsoidal particles with the ratio of longitudinal to lateral axis 0.'8; curve 6 for 
that ratio equalling 0·6. The plot of the relation between Nu and Pe for prolate 
ellipsoids with the ratio of axes 0·99 is identical with that for oblate ellipsoids and 
the same ratio of axes. It is observed that for low values of Pe the Nusselt number 
increases with increasing longitudinal axis. 

A function Nu = f(Pe , c' , d) was searched for by a linear regression with the 
following relations as the result: 

Nu = 2·54 PeO.10 c,o .o830(1 - dt l .4S , eventually 

Nu = 3·25 PeO .09l c,o.os0(1 - d 3t 4 . S4 for oblate ellipsoids; 
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Nu = 4·36 PeO.278 c,o.08°(1 - dt°.478 , eventually 

Nu = 4·68 PeO .27 8 c,o.08°(1 - d3t1.5 9 for prolate ellipsoids. 

The (1 - d3
) quantity characterizes the void space belonging to one particle. 

From the relations it is apparent that Nu markedly increases with increasing re
striction. The increase is somewhat less pronounced with varying value of Pe. The 
smallest change then occurs with changing eccentricity. 

Interesting results yields also investigation of the distribution of intensity of heat 
transfer along the surface of the particle. A good insight is provided by examining 
the ratio, p, of intensity of heat transfer on the trailing edge of the particle to that 
on the leading edge. Following relations were obtained by multiple linear regression 
p = 1'28 Pe-O.O I3 C'O .17(1 - d)O.33, eventually 

p = J'18 Pe-O .Ot3 C
,O .17 (I 

p = 0'477 Pe-O.33 C'O.082(l 

p = 0.535 Pe - O. 33 C'O.082(1 

20 

Nu 

10 

(}1 10 
Pe 

FIG. 1 

_ d3 )0.68 for oblate ellipsoids ; 

_ dto. so , eventually 

_ d3tt.21 for prolate ellipsoids. 

100 

10r--------,----.-----,------~ 

Nu 

~~1--------~------~1~0--------1~00 
Pe 

FIG. 2 

Dependence of Nu on Pe for Ellipsoidal Par
ticles and the Ratio bla = 0·8 

Dependence of Nu on Pe for Ellipsoidal Par
ticles at d = 0 and Different Ratio of Axes 
bla 1 Restriction dO; 2 d 0·2; 3 d 0'4; 4 d 0'6. 
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From the magnitude of the coefficients of the regression function it may be judged 
that the intensity of heat transfer on the trailing edge, in comparison with that on the 
leading edge, decreases with Pe. A faster decrease occurs for prolate ellipsoid shaped 
particles. The ratio p depends directly on the dimensionless eccentricity. For more 
oblate particles the relative difference in intensity of heat transfer is smaller. The same 
dependence, though somewhat less conspicuous, is valid for prolate ellipsoids. 

With increasing restriction the relative difference in intensity of the fluxes increases 
(p decreases) for oblate ellipsoid shaped particles. For prolate ones, p increases with 
increasing restriction, i.e. the relative difference in intensity of the fluxes decreases. 

Information about the extent of the thermal field, i.e. the part of the space sustain
ing substantial temperature differences, may be obtained from the thickness of the 
boundary layer. If the latter is defined as the average distance of the T = 0·01 iso
therm from the surface of the particle4 then it is possible to determine this value 
by interpolation. The dependence of ;) on selected parameters can also be examined 
in graphical form. 

Figs 3 and 4 show the dependence of the average thickness of the boundary layer (5 

on the Peclet number. The restriction is a parameter in Fig. 3 and b/a = 0'8. Fig. 4 
gives that dependence for different ellipsoids and d = O. Only two curves are drawn 
in Fig. 4 since it was found that at constant restriction individual curves differ only 
very little. The curves suggest that the thickness of the boundary layer decreases 

t jg 
20 

10 

11 

0.1 10 100 

FIo.3 

Dependence of ~ on Pe for Ellipsoidal Parti
cles at the Ratio of Axes b/a = 0·8 

1 Restriction dO; 2 d 0'2; 3 d 0'4; 4 d 0·6. 

cf jg 
20 

10 

0.1 10 Pt> 100 

FIo.4 

Dependence of a on Pe for Ellipsoidal Par
ticles at d = 0 and Different Ratio of Axes 

b/a 
1 b/a = 0'99; 2 b/a = 1-25. 
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both with increasing Pe and restriction. The differences in the thickness of the boun
dary layer at different restrictions diminish with increasing value of Pe. 

lt may be concluded that the finite difference method permits by taking the double 
of the increment to determine the error. of the temperature in individual grid points. 
Thus determined errors were always smaller than 1?1u. The errors of Nu were even 
smaller. 

Comparison with the literature. The results for very small eccentricity, i.e. the ellipsoids with the 
ratio of axes approaching unity may be compared with the results for spherical particles. Heat 
transfer from the surface of a solid spherical particle in a confined laminar region has been solved 
in paper4. Our results for the axes ratio equal 0·999 are comparable with those published in the 
mentioned paper. Solution of heat (and mass) transfer from non-spherical particles in an infinite 
laminar region is given by Brenners. His results are applicable for Pe < 1. For the Nusselt 
number the author gives the relation Nu = NUo(J + ~ NuoPe). Nuo here stands for Nu at 
Pe = O. 

Comparing our results with Nu calculated from the last 'relation S for Pe < 1 we obtain devia
tions of the order 8% for particles with the axis ratio 0'999; for particles with a smaller value 
of this ratio (greater eccentricity) the deviations decrease. For particles with the axis ratio O·} 
the deviations amount to 2%. These results, however, cannot be applied to particles in a con
fined region. In such a case we obtain for lower value of Pe slightly changing values of Nu. With 
increasing value of the restriction the range for Pe within which Nu changes only slightly widens. 

UST OF SYMBOLS 

ao length of lateral axis of the principal longitudinal cut through particle 
a1 length of lateral axis of the prinCipal longitudinal cut through restricting boundary 
a tv thermal diffusivity 
bo length of longitudinal axis of the principal longitudinal cut through particle 
b l length of longitudinal axis of the principal cut through restricting boundary 
c = (0& - b&)1/2 eccentricity for oblate ellipsoids 
c = (b& - a&)1 /2 eccentricity for prolate ellipsoids 
c' = cia dimensionless eccentricity 
d restriction 
Nu = (211.00)/). Nusselt number 
Pe = (2Uao)/atv Peclet number 
p ratio of intensity of heat transfer on the leading edge to that on the trailing edge 
S surface area of particle 

temperature 
to temperature on surface of particle 
100 temperature on restricting boundary 
T = (t - t 00)/ (to - too) dimensionless temperature 
1/ = sinh ~ transformation for oblate ellipsoids 
I/o = u equation of surface for circular oblate ellipsoid shaped particle 
111 = u equation of restricting surface for oblate ellipsoid particle 
U velocity on restricting boundary 
v = cosh'; transformation for prolate ellipsoids 
vo = v equation of surface for circular prolate ellipsoid shaped particle 
VI = v equation of restricting surface for prolate ellipsoids 
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velocity vector 
x = cos'1 transformation 

y = __ u_o __ _ _ ~ transformation for prolate ellipsoids 
(1 - d)u 1 - d 

heat transfer coefficient 
J boundary layer thickness 
~ elliptic coordinate 
). thermal conductivity of fluid 
'II stream function 
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